Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6765, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514805

RESUMO

Surfaces on transit vehicles are frequently touched and could potentially act as reservoirs for micro-organism transmission. Regular cleaning and disinfection to minimize the spread of micro-organisms is operationally challenging due to the need to keep vehicles in circulation. The application of copper (Cu) alloys to high- touch surfaces could help reduce the risk of cross-contamination, however, little is known about the durability and efficacy of engineered copper surfaces after prolonged use. Three Cu products (decal, thermal fabrication, and alloy covers) were assessed over a 12-month period. These Cu products were randomly installed on 110 stanchions on three buses and four train (SkyTrain) cars in Vancouver and three buses, two subway cars, and two streetcars in Toronto with mirrored control surfaces directly opposite. Bacterial counts (Colony forming units, CFU) and ATP bioluminescence (ATPB) were measured every two months after peak morning routes. Durability of the Cu products were assessed monthly through visual inspection and colorimetry assays or by ex-situ microscopy. Cu products on stanchions reduced the mean colony forming units (CFU) of all vehicles by 42.7% in the mean CFU (0.573 (CI 95% 0.453-0.726), p-value < 0.001) compared to control surfaces. The three Cu products exhibited an overall 87.1% reduction in the mean ATPB readings (0.129 (CI 95% 0.059-0.285, p-value < 0.001) compared to controls. Surface Cu concentration for all three products was consistent throughout the 12-month period. Electron microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS) cross-sectional analysis showed no change in thickness or dealloying of Cu products, however SEM top-down analysis revealed substantial carbon accumulation on all surfaces. Cu products installed on transit vehicles maintained antimicrobial efficacy and durability after 12 months of use.


Assuntos
Anti-Infecciosos , Cobre , Cobre/química , Estudos Transversais , Desinfecção/métodos , Ligas/química
3.
ACS Omega ; 9(1): 1265-1277, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222670

RESUMO

Alternative means for soda ash (Na2CO3) production from sodium sulfate (Na2SO4) are needed due to the intensive consumption of energy in the conventional Mirabilite-Solvay process (MSP). We demonstrate a new process to produce soda ash using sodium sulfate as a feed material. The new process relies on the antisolvent crystallization of unreacted Na2SO4 to separate it from soluble (NH4)2SO4 in a mixed monoethanolamine (MEA) and monoethylene glycol (MEG) solution. To develop the process, the solubilities of Na2SO4 and (NH4)2SO4 solids in aqueous mixed MEA-MEG solutions were first measured and then modeled using regressed paired-ion interactions from the electrolyte nonrandom two-liquid (E-NRTL) model. Anhydrous dense soda ash with a bulk density of up to 1146 kg/m3 was obtained when the concentrated Na2SO4 brines reacted with CO2 and NH3.

4.
ACS Appl Mater Interfaces ; 16(1): 1659-1674, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38108601

RESUMO

Mg and its alloys are promising biodegradable materials for orthopedic implants and cardiovascular stents. The first interactions of protein molecules with Mg alloy surfaces have a substantial impact on their biocompatibility and biodegradation. We investigate the early-stage electrochemical, chemical, morphological, and electrical surface potential changes of alloy WE43 in either 154 mM NaCl or Hanks' simulated physiological solutions in the absence or presence of bovine serum albumin (BSA) protein. WE43 had the lowest electrochemical current noise (ECN) fluctuations, the highest noise resistance (Zn = 1774 Ω·cm2), and the highest total impedance (|Z| = 332 Ω·cm2) when immersed for 30 min in Hanks' solution. The highest ECN, lowest Zn (1430 Ω·cm2), and |Z| (49 Ω·cm2) were observed in the NaCl solution. In the solutions containing BSA, a unique dual-mode biodegradation was observed. Adding BSA to a NaCl solution increased |Z| from 49 to 97 Ω·cm2 and decreased the ECN signal of the alloy, i.e., the BSA inhibited corrosion. On the other hand, the presence of BSA in Hanks' solution increased the rate of biodegradation by decreasing both Zn and |Z| while increasing ECN. Finally, using scanning Kelvin probe force microscopy (SKPFM), we observed an adsorbed nanolayer of BSA with aggregated and fibrillar morphology only in Hanks' solution, where the electrical surface potential was 52 mV lower than that of the Mg oxide layer.


Assuntos
Ligas , Magnésio , Teste de Materiais , Magnésio/química , Ligas/química , Cloreto de Sódio , Soroalbumina Bovina , Stents , Corrosão
5.
Biometals ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133868

RESUMO

Copper has well-documented antibacterial effects but few have evaluated it after prolonged use and against bacteria and viruses. Coupons from three copper formulations (solid, thermal coating, and decal applications) and carbon steel controls were subjected to 200 rounds simulated cleaning using a Wiperator™ and either an accelerated hydrogen peroxide, quaternary ammonium, or artificial sweat products. Antibacterial activity against S. aureus and P. aeruginosa was then evaluated using a modified Environmental Protection Agency protocol. Antiviral activity against coronavirus (229E) and norovirus (MNV-1) surrogates was assessed using the TCID50 method. Results were compared to untreated control coupons. One hour after inoculation, S. aureus exhibited a difference in log kill of 1.16 to 4.87 and P. aeruginosa a log kill difference of 3.39-5.23 (dependent upon copper product and disinfectant) compared to carbon steel. MNV-1 demonstrated an 87-99% reduction on each copper surfaces at 1 h and 99% reduction at 2 h compared to carbon steel. Similarly, coronavirus 229E exhibited a 97-99% reduction after 1 h and 90-99% after 2 h. Simulated use with artificial sweat did not hinder the antiviral nor the antibacterial activity of Cu surfaces. Self-sanitizing copper surfaces maintained antibacterial and antiviral activity after 200 rounds of simulated cleaning.

6.
Biomed Mater ; 18(1)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36395511

RESUMO

The biodegradation rate of Mg alloy medical devices, such as screws and plates for temporary bone fracture fixation or coronary angioplasty stents, is an increasingly important area of study.In vitromodels of the corrosion behavior of these devices use revised simulated body fluid (m-SBF) based on a healthy individual's blood chemistry. Therefore, model outputs have limited application to patients with altered blood plasma glucose or protein concentrations. This work studies the biodegradation behavior of Mg alloy WE43 in m-SBF modified with varying concentrations of glucose and bovine serum albumin (BSA) to (1) mimic a range of disease states and (2) determine the contributions of each biomolecule to corrosion. Measurements include the Mg ion release rate, electrolyte pH, the extent of hydrogen evolution (as a proxy for corrosion rate), surface morphology, and corrosion product composition and effects. BSA (0.1 g l-1) suppresses the rate of hydrogen evolution (about 30%) after 24 h and-to a lesser degree-Mg2+release in both the presence and absence of glucose. This effect gets more pronounced with time, possibly due to BSA adsorption on the Mg surface. Electrochemical studies confirm that adding glucose (2 g l-1) to the solution containing BSA (0.1 g l-1) caused a decrease in corrosion resistance (by around 40%), and concomitant increase in the hydrogen evolution rate (from 10.32 to 11.04 mg cm-2d-1) to levels far beyond the tolerance limits of live tissues.


Assuntos
Líquidos Corporais , Albumina Sérica , Humanos , Glucose , Ligas , Soroalbumina Bovina , Hidrogênio
7.
Langmuir ; 38(35): 10854-10866, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35994730

RESUMO

The formation of a protein nanobiofilm on the surface of degradable biomaterials such as magnesium (Mg) and its alloys influences metal ion release, cell adhesion/spreading, and biocompatibility. During the early stage of human body implantation, competition and interaction between inorganic species and protein molecules result in a complex film containing Mg oxide and a protein layer. This film affects the electrochemical properties of the metal surface, the protein conformational arrangement, and the electronic properties of the protein/Mg oxide interface. In this study, we discuss the impact of various simulated body fluids, including sodium chloride (NaCl), phosphate-buffered saline (PBS), and Hanks' solutions on protein adsorption, electrochemical interactions, and electrical surface potential (ESP) distribution at the adsorbed protein/Mg oxide interface. After 10 min of immersion in NaCl, atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) showed a higher surface roughness related to enhanced degradation and lower ESP distribution on a Mg-based alloy than those in other solutions. Furthermore, adding bovine serum albumin (BSA) to all solutions caused a decline in the total surface roughness and ESP magnitude on the Mg alloy surface, particularly in the NaCl electrolyte. Using SKPFM surface analysis, we detected a protein nanobiofilm (∼10-20 nm) with an aggregated and/or fibrillary morphology only on the Mg surface exposed in Hanks' and PBS solutions; these surfaces had a lower ESP value than the oxide layer.


Assuntos
Ligas , Magnésio , Corrosão , Humanos , Magnésio/química , Óxido de Magnésio , Teste de Materiais , Óxidos , Cloreto de Sódio , Propriedades de Superfície
8.
Sci Rep ; 12(1): 11589, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804164

RESUMO

This study explores the effect of surface re-finishing on the corrosion behavior of electron beam manufactured (EBM) Ti-G5 (Ti-6Al-4V), including the novel application of an electron beam surface remelting (EBSR) technique. Specifically, the relationship between material surface roughness and corrosion resistance was examined. Surface roughness was tested in the as-printed (AP), mechanically polished (MP), and EBSR states and compared to wrought (WR) counterparts. Electrochemical measurements were performed in chloride-containing media. It was observed that surface roughness, rather than differences in the underlying microstructure, played a more significant role in the general corrosion resistance in the environment explored here. While both MP and EBSR methods reduced surface roughness and enhanced corrosion resistance, mechanical polishing has many known limitations. The EBSR process explored herein demonstrated positive preliminary results. The surface roughness (Ra) of the EBM-AP material was considerably reduced by 82%. Additionally, the measured corrosion current density in 0.6 M NaCl for the EBSR sample is 0.05 µA cm-2, five times less than the value obtained for the EBM-AP specimen (0.26 µA cm-2).

9.
ACS Appl Mater Interfaces ; 14(2): 3601-3609, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985240

RESUMO

Polyolefins have had limited application in advanced technologies due to their low surface energy, hydrophobicity, and weak interfacial adhesion with polar coatings. Herein, we propose the use of transition metals at their lowest oxidation state and inorganic peroxides to improve the functionality, surface free energy, hydrophilicity, and adhesion properties of high-density polyethylene (HDPE). Among the nine combinations of transition metals and peroxides used in this study, the combination of Co(II) and peroxymonosulfate (PMS) peroxide was the most effective for surface modification of HDPE, followed closely by the combination of Ru(III) and PMS. After chemical treatment, HDPE's surface functionality, composition, and energy were analyzed via Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements. Hydroxyl, carbonyl, and carboxylic acid functional groups were detected on the surface, which explained the improved hydrophilicity of the modified HDPE surface; the contact angle of HDPE with DI water decreased from 94.31 to 51.95° after surface treatment. To investigate the effect of HDPE's surface functionality on its interfacial properties, its adhesion to a commercial epoxy coating was measured via pull-off strength test according to ASTM D54541. After only 20 min of surface treatment with Co(II)/PMS solution, the adhesion strength at the interface of HDPE and the epoxy coating increased by 193%, confirming the importance of polyolefins' surface functionality on their interfacial adhesion properties. The method outlined herein can improve HDPE's surface functionality by introducing sulfate radicals. It improves HDPE's hydrophilicity and adhesion properties without requiring strong acids or time-consuming pre- or post-treatment processes. This process has the potential to increase the use of polyolefins in various industries, such as for protective coatings, high performance lithium-ion battery separators, and acoustic sensors.

10.
Infect Control Hosp Epidemiol ; 43(1): 79-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715655

RESUMO

OBJECTIVE: To evaluate 3 formulations of copper (Cu)-based self-sanitizing surfaces for antimicrobial efficacy and durability over 1 year in inpatient clinical areas and laboratories. DESIGN: Randomized control trial. SETTING: We assessed 3 copper formulations: (1) solid alloy 80% Cu-20% Ni (integral copper), (2) spray-on 80% Cu-20% Ni (spray-on) and (3) 16% composite copper-impregnated surface (CIS). In total, 480 coupons (1 cm2) of the 3 products and control surgical grade (AISI 316) stainless steel were inserted into gaskets and affixed to clinical carts used in patient care areas (including emergency and maternity units) and on microbiology laboratory bench work spaces (n = 240). The microbial burden and assessment of resistance to wear, corrosion, and material compatibility were determined every 3 months. Participants included 3 tertiary-care Canadian adult hospital and 1 pediatric-maternity hospital. RESULTS: Copper formulations used on inpatient units statistically significantly reduced bacterial bioburden compared to stainless steel at months 3 and 6. Only the integral copper product had significantly less bacteria than stainless steel at month 12. No statistically significant differences were detected in microbial burden between copper formulations and stainless-steel coupons on microbiology laboratory benches where bacterial counts were low overall. All mass changes and corrosion rates of the formulations were acceptable by engineering standards. CONCLUSIONS: Copper surfaces vary in their antimicrobial efficacy after 1 year of hospital use. Frequency of cleaning and disinfection influence the impact of copper; the greatest reduction in microbial bioburden occurred in clinical areas compared to the microbiology laboratory where cleaning and disinfection were performed multiple times daily.


Assuntos
Anti-Infecciosos , Cobre , Adulto , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Canadá , Criança , Cobre/farmacologia , Feminino , Hospitais , Humanos , Gravidez , Aço Inoxidável
11.
MethodsX ; 8: 101539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754807

RESUMO

A method to develop thermo-kinetic (TK) diagrams for the Cu-H2O-acetate and Cu-H2O systems is described. Conventional Eh-pH diagrams, also known as Pourbaix diagrams, are developed based on the thermodynamic stability of component species, typically in aqueous media. TK diagrams are an improvement on Eh-pH diagrams as they also describe the kinetics of electrochemical processes. These diagrams are developed by using data from linear scan voltammetry of Cu rotating disk electrodes exposed to aqueous media of different pH. By applying the same procedure, the TK diagrams can be developed for other metals or mineral systems exposed to aqueous media containing ligands. To ensure reproducibility and reconstruction of the TK diagrams for other metal/mineral/electrolyte systems, some important experimental considerations are highlighted in this study. These TK diagrams are useful to evaluate the corrosion of metals, the leaching performance of minerals and to predict the suitable conditions for metal recycling processes. Briefly, this article explains:•Important experimental considerations that could affect the kinetics of electrochemical processes.•A method to construct TK diagrams with examples of the Cu-H2O-acetate and Cu-H2O systems.•With overlaid Eh-pH diagrams, TK diagrams explain both the thermodynamic stability of component species and the kinetics of the electrochemical processes.

12.
Materials (Basel) ; 14(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34501097

RESUMO

The corrosivity of bitumen at 60 and 120 °C was examined by exposing American Petroleum Institute (API) X100 (yield strength 100 ksi, 690 MPa) pipeline steel to bitumen in an autoclave for 30 days. Prior to the autoclave measurements, the inclusion types in the API-X100 pipeline steel were characterized by scanning electron microscopy (SEM), and four types of inclusions were identified, according to their elemental compositions. The four types of inclusions and the surrounding matrix were characterized by ex situ SEM before and after exposure to bitumen. The results show that no obvious corrosion occured at the inclusions or the matrix after exposure at 60 and 120 °C.

13.
Polymers (Basel) ; 13(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065062

RESUMO

The barrier performance of organic coatings is a direct function of mass transport and long-term stability of the polymeric structure. A predictive assessment of the protective coating cannot be conducted a priori of degradation effects on transport. Epoxy-based powder coatings are an attractive class of coatings for pipelines and other structures because application processing times are low and residual stresses between polymer layers are reduced. However, water ingress into the polymeric network of these coatings is of particular interest due to associated competitive sorption and plasticization effects. This review examines common analytical techniques for identifying parameters involved in transport in wet environments and underscores the gaps in the literature for the evaluation of the long-term performance of such coating systems. Studies have shown that the extent of polymer hydration has a major impact on gas and ion permeability/selectivity. Thus, transport analyses based only on micropore filling (i.e., adsorption) by water molecules are inadequate. Combinatorial entropy of the glassy epoxy and water vapor mixture not only affects the mechanism of membrane plasticization, but also changes the sorption kinetics of gas permeation and causes a partial gas immobility in the system. However, diffusivity, defined as the product of a kinetic mobility parameter and a concentration-dependent thermodynamic parameter, can eventually become favorable for gas transport at elevated temperatures, meaning that increasing gas pressure can decrease selectivity of the membrane for gas permeation. On the other hand, reverse osmosis membranes have shown that salt permeation is sensitive to, among other variables, water content in the polymer and a fundamental attribute in ionic diffusion is the effective size of hydrated ions. In addition, external electron sources-e.g., cathodic protection potentials for pipeline structures-can alter the kinetics of this transport as the tendency of ions to dissociate increases due to electrostatic forces. Focusing primarily on epoxy-based powder coatings, this review demonstrates that service parameters such as humidity, temperature, and concentration of aggressive species can dynamically develop different transport mechanisms, each at the expense of others. Although multilayered coating systems decrease moisture ingress and the consequences of environmental exposure, this survey shows that demands for extreme operating conditions can pose new challenges for coating materials and sparse data on transport properties would limit analysis of the remaining life of the system. This knowledge gap impedes the prediction of the likelihood of coating and, consequently, infrastructure failures.

14.
Acta Biomater ; 113: 660-676, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32553917

RESUMO

In the field of biodegradable metallic materials, rapid and non-uniform biodegradation, caused by uncontrolled corrosion rates, is a potential shortcoming. Among the prominent biodegradable materials, magnesium is an attractive choice, however, it is prone to rapid dissolution. In contrast, iron possesses a slow dissolution rate. To approach the middle ground, instead of making magnesium more corrosion-resistant, the less-explored approach of making iron less corrosion-resistant is employed here. In this study, iron, and magnesium, having contrasting corrosion rates, are combined via magnetron co-sputtering. The idea of combinatorial synthesis is employed to fabricate two model nanostructured Fe-Mg samples, i.e. CSFM-1 (Fe85Mg15), and CSFM-2 (Fe65Mg35), exhibiting a controlled and uniform degradation in phosphate-buffer saline solution. The structural characterization of the two samples demonstrates a substitutional solid solution of bcc-Fe-Mg in CSFM-1 and an amorphous short-range-ordered structure in the CSFM-2 sample. Electrochemical investigation shows increased corrosion rates for the two Fe-Mg samples in comparison to pure Fe, validated by relatively active corrosion potentials, higher corrosion current densities, faster anodic dissolution, and lower charge transfer resistances, governed by chemical composition and non-equilibrium nanostructures. Finally, nano-indentation testing of the two samples reveals relatively higher hardness and lower elastic moduli, a suitable combination for bio-implants. STATEMENT OF SIGNIFICANCE: The use of Mg as a biodegradable in-vivo  implant material is problematic because of its high dissolution rate and potential for hydrogen gas generation. This is the first time that the idea of combinatorial synthesis is employed to fabricate two model nanostructured Fe-Mg systems, i.e. CSFM-1 (Fe85Mg15), and CSFM-2 (Fe65Mg35), exhibiting a controlled and uniform degradation. The structural characterization of the two systems demonstrates a substitutional solid solution of bcc-Fe-Mg in CSFM-1 and an amorphous short-range-ordered structure in the CSFM-2 system. Electrochemical investigation shows increased biodegradation rates for the two Fe-Mg systems in comparison to pure Fe, validated by relatively active corrosion potentials, higher corrosion current densities, faster anodic dissolution, and lower charge transfer resistances, governed by chemical composition and non-equilibrium nanostructures.


Assuntos
Ferro , Nanoestruturas , Ligas , Corrosão , Teste de Materiais , Solubilidade
15.
Biointerphases ; 15(1): 011005, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041413

RESUMO

Antimicrobial properties of solid copper (Cu) surfaces against various microorganisms have been demonstrated, but little is known about the durability and relative antimicrobial efficacy of different Cu formulations currently used in healthcare. The aim of this study was to assess whether three different formulations of copper-bearing alloys (integral, spray-on and Cu-impregnated surfaces) and a stainless steel control differed in their antimicrobial efficacy, durability, and compatibility with hospital-grade cleaner/disinfectants. The U.S. Environmental Protection Agency draft protocol for the evaluation of bactericidal activity of Cu containing alloys was modified to more accurately reflect cleaning methods in healthcare. The three different Cu alloys were evaluated using 25 × 25 × 3 mm disks subjected to one year of simulated cleaning and disinfection using the Wiperator™ with microfiber cloths presoaked in three common hospital disinfectants: accelerated hydrogen peroxide, quaternary ammonium, or sodium hypochlorite solutions. Bactericidal activity was evaluated using Staphylococcus aureus and Pseudomonas aeruginosa. While all Cu formulations exhibited some antimicrobial activity, integral and spray-on Cu alloys showed the greatest efficacy. Assessments of durability included documentation of changes in mass, morphological changes by scanning electron microscopy, chemical composition alteration by energy-dispersive x-ray spectroscopy, and surface roughness alteration using profilometry over one year of simulated use. The integral Cu alloy had the least mass loss (0.20% and 0.19%) and abrasion-corrosion rate (6.28 and 6.09 µm/yr) compared to stainless steel. The integral product also showed the highest durability. Exposure to disinfectants affected both the antimicrobial efficacy and durability of the various copper products.


Assuntos
Anti-Infecciosos/química , Cobre/química , Ligas/química , Anti-Infecciosos/farmacologia , Cobre/farmacologia , Corrosão , Pseudomonas aeruginosa/efeitos dos fármacos , Hipoclorito de Sódio/química , Hipoclorito de Sódio/farmacologia , Aço Inoxidável/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
16.
Commun Chem ; 3(1): 155, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36703433

RESUMO

The electroreduction of CO2 is one of the most investigated reactions and involves testing a large number and variety of catalysts. The majority of experimental electrocatalysis studies use conventional one-sample-at-a-time methods without providing spatially resolved catalytic activity information. Herein, we present the application of scanning electrochemical microscopy (SECM) for simultaneous screening of different catalysts forming an array. We demonstrate the potential of this method for electrocatalytic assessment of an array consisting of three Sn/SnOx catalysts for CO2 reduction to formate (CO2RF). Simultaneous SECM scans with fast scan (1 V s-1) cyclic voltammetry detection of products (HCOO-, CO and H2) at the Pt ultramicroelectrode tip were performed. We were able to consistently distinguish the electrocatalytic activities of the three compositionally and morphologically different Sn/SnOx catalysts. Further development of this technique for larger catalyst arrays and matrices coupled with machine learning based algorithms could greatly accelerate the CO2 electroreduction catalyst discovery.

17.
ChemSusChem ; 11(9): 1533-1548, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29520996

RESUMO

The development of a hybrid system capable of storing energy and the additional benefit of Cu extraction is discussed in this work. A fixed bed flow cell (FBFC) was used in which a composite negative electrode containing CuFeS2 (80 wt %) and carbon black (20 wt %) in graphite felt was separated from a positive (graphite felt) electrode by a proton-exchange membrane. The anolyte (0.2 m H2 SO4 ) and catholyte (0.5 m Fe2+ in 0.2 m H2 SO4 with or without 0.1 m Cu2+ ) were circulated in the cell. The electrochemical activity of the Fe2+ /Fe3+ redox couple over graphite felt significantly improved after the addition of Cu2+ in the catholyte. Ultimately, in the CuFeS2 ∥Fe2+ /Cu2+ (CFeCu) FBFC system, the specific capacity increased continuously to 26.4 mAh g-1 in 500 galvanostatic charge-discharge (GCD) cycles, compared to the CuFeS2 ∥Fe2+ (CFe) system (13.9 mAh g-1 ). Interestingly, the specific discharge energy gradually increased to 3.6 Wh kg-1 in 500 GCD cycles for the CFeCu system compared to 3.29 Wh kg-1 for the CFe system in 150 cycles. In addition to energy storage, 10.75 % Cu was also extracted from the mineral, which is an important feature of the CFeCu system as it would allow Cu extraction and recovery through hydrometallurgical methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...